Maplets for correspondence-based object recognition

نویسندگان

  • Junmei Zhu
  • Christoph von der Malsburg
چکیده

We present a correspondence-based system for visual object recognition with invariance to position, orientation, scale and deformation. The system is intermediate between high- and low-dimensional representations of correspondences. The essence of the approach is based on higher-order links, called here maplets, which are specific to narrow ranges of mapping parameters (position, scale and orientation), which interact cooperatively with each other, and which are assumed to be formed by learning. While being based on dynamic links, the system overcomes previous problems with that formulation in terms of speed of convergence and range of allowed variation. We perform face recognition experiments, comparing ours to other published systems. We see our work as a step towards a reformulation of neural dynamics that includes rapid network self-organization as essential aspect of brain state organization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

Breaking Object Correspondence Across Saccadic Eye Movements Deteriorates Object Recognition

Visual perception is based on information processing during periods of eye fixations that are interrupted by fast saccadic eye movements. The ability to sample and relate information on task-relevant objects across fixations implies that correspondence between presaccadic and postsaccadic objects is established. Postsaccadic object information usually updates and overwrites information on the c...

متن کامل

Model Based Correspondence for Object Recognition

Most model-based methods for object recognition require a detailed knowledge of the correspondence between model and image features. Correspondence, however, is a diicult problem in its own right. We suggest a model-based technique to establish image-to-model correspondence and, therefore, to facilitate the recognition of objects. Our correspondence approach uses the model to guide and constrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 17 8-9  شماره 

صفحات  -

تاریخ انتشار 2004